- Hämäläinen, R., Turpeinen, U., Ahlgrén, M. & Rantala, M. (1978). *Acta Chem. Scand. Ser. A*, **32**, 549–553.
- HAMILTON, W. C. (1959). Acta Cryst. 12, 609-610.
- Korhonen, K. & Hämäläinen, R. (1979). Acta Chem. Scand. Ser. A, 32, 569–575.
- KORHONEN, K. & HÄMÄLÄINEN, R. (1981). Acta Cryst. B37, 829–834.
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J. P. & WOOLFSON, M. M. (1978). MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- STEWART, J. M., MACHIN, P. A., DICKINSON, C., AMMON, H. L., HECK, H. & FLACK, H. (1976). The XRAY 76 System. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
- Токи, Т., Емоги, S. & Мито, Y. (1979). Bull. Chem. Soc. Jpn, 52, 2114–2119.
- UEKI, T., ASHIDA, T., SASADA, Y. & KAKUDO, M. (1967). Acta Cryst. 22, 870–878.
- UEKI, T., ASHIDA, T., SASADA, Y. & KAKUDO, M. (1969). Acta Cryst. B25, 328-335.

Acta Cryst. (1982). B38, 1580-1583

Structures of Di- μ -acetato-(O,O')- μ -aqua-bis[acetato(N,N,N',N'-tetramethylethylenediamine)cobalt(II)] and μ -Aqua-di- μ -chloroacetato-(O,O')-bis[chloroacetato(N,N,N',N'-tetramethylethylenediamine)cobalt(II)]

By URHO TURPEINEN, MARKKU AHLGRÉN AND REIJO HÄMÄLÄINEN

Department of Inorganic Chemistry, University of Helsinki, SF-00100 Helsinki 10, Finland

(Received 26 October 1981; accepted 15 December 1981)

Abstract. $C_{20}H_{46}Co_2N_4O_9$, orthorhombic, *Pbca*, a = 12.056 (3), b = 15.917 (5), c = 31.330 (10) Å, $M_r = 604.6$, Z = 8, $D_c = 1.336$ Mg m⁻³, final R = 0.038 for 3134 observed reflections; $C_{20}H_{42}Cl_4Co_2N_4O_9$, monoclinic, P2/n, a = 10.834 (3), b = 8.328 (3), c = 18.749 (3) Å, $\beta = 105.9$ (2)°, $M_r = 742.4$, Z = 2, $D_c = 1.515$ Mg m⁻³, final R = 0.033 for 2248 observed reflections. The complexes are octahedral, with a dimeric structure in which Co atoms are joined by one water molecule and two carboxylate groups.

Introduction. This work is a continuation of earlier studies on the crystal structures of Cu¹¹ and Ni¹¹ carboxylate complexes with N, N, N', N'-tetramethylethylenediamine as the second ligand. The Cu¹¹ complexes are monomeric and five- or six-coordinated depending upon the carboxylate ligands (Turpeinen, Ahlgrén & Hämäläinen, 1978; Ahlgrén, Hämäläinen & Turpeinen, 1978), and the Ni¹¹ complexes are octahedral, with a dimeric structure in which bridging occurs *via* the water O atom and two carboxylate groups (Ahlgrén, Turpeinen & Hämäläinen, 1978). This type of bridging system is novel in the first-row transition elements and is of interest because of possible low-dimensional magnetic interaction.

The title compounds $C_{20}H_{40}C_0N_4O_9$ (I) and $C_{20}H_{42}Cl_4C_0N_4O_9$ (II) were obtained by mixing equal

amounts of the appropriate Co11 carboxylate and N, N, N', N'-tetramethylethylenediamine. Compound (I) was crystallized from cyclohexane and compound (II) from aqueous ethanol solution. Unit-cell parameters and intensity data for both compounds were obtained with a Syntex P2, diffractometer and graphite-monochromatized Mo $K\alpha$ radiation. The ω -scan technique was used and the scan rate varied from 2.0 to 30.0° min⁻¹ depending upon peak intensity. The total numbers of reflections collected for (I) and (II) were 5286 and 3235 respectively, of which 3134 and 2248 were considered observed, having $I > 3\sigma(I)$. Systematically absent reflections indicated the space groups to be *Pbca* for (I) and *Pn* or P2/n for (II); P2/nwas verified by successful refinement. No absorption correction was applied.

The structures were solved with *MULTAN* 78 (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978) and Fourier methods of the XRAY 76 program system (Stewart, Machin, Dickinson, Ammon, Heck & Flack, 1976) and refined by full-matrix least squares minimizing $\sum w(|F_o| - |F_c|)^2$ with unit weights for (I) and the weighting scheme $w = 1/(40 + |F_o| + 0.01|F_o|^2)$ for (II). After all nonhydrogen atoms were located difference Fourier maps showed the positions of the H atoms, which were then refined isotropically together with the anisotropic

Table	1.	Ator	nic	coor	dinates	5 (X	104	for	nonh	ydrogen
	ato	oms a	nd >	× 10 ³	for hy	drog	en a	atom.	s) of (I)

Table 1 (cont.)

	For nonhydrogen at	oms $B_{eq} = \frac{1}{3} (B_{eq})$	$B_{11} + B_{22} + B_3$	₃).		x	y	Ζ	(Å ²)
				B_{co}/B	H(28)	680 (4)	468 (3)	439 (2)	17 (2)
	x	v	Ζ	(Å ²)	H(29)	553 (5)	485 (4)	461 (2)	11(1)
$C_{\alpha}(1)$	2575 (1)	1042 (1)	2457(1)	2 2 (1)	H(30)	540 (5)	274 (3)	503 (2)	8(1)
$C_0(1)$	5575(1)	1945 (1)	3437(1)	$3 \cdot 3(1)$	H(31)	578 (5)	363 (4)	533 (2)	10(1)
O(1)	3979 (3)	1278(2)	4000 (1)	5.7(2)	H(32)	466 (4)	368 (3)	490 (1)	10(1)
O(2)	5259 (3)	1270(2) 1999(2)	4365 (1)	5.7(2) 5.6(2)	H(33)	426 (5)	32 (4)	472 (2)	13 (2)
O(3)	2862 (3)	2895 (2)	3799 (1)	$5 \cdot 2(2)$	H(34)	521(5)	15 (4)	436 (2)	1/(2)
O(4)	4142 (3)	3625 (2)	4145(1)	5.7(2)	H(36)	172 (5)	300 (4)	475 (2)	13(2) 12(2)
O(5)	4229 (3)	953 (2)	3103 (1)	5.0(2)	H(37)	186 (5)	352 (4)	408(2) 447(2)	12(2) 11(2)
O(6)	6019 (2)	1059 (2)	3245 (1)	6.2(2)	H(38)	252 (5)	417 (3)	451 (2)	13(2)
O(7)	6196 (3)	4108 (2)	3693 (1)	5.3 (2)	H(39)	502 (5)	-45 (3)	323 (2)	11(2)
O(8)	5710 (3)	3793 (2)	3033 (1)	$6 \cdot 1 (2)$	H(40)	507 (5)	-33 (4)	273 (2)	16 (2)
U(9)	5205 (2)	2486 (2)	3460 (1)	3.4(2)	H(41)	603 (5)	-42 (4)	304 (2)	13 (2)
N(1) N(2)	2990 (3)	2520 (2)	2854 (1)	3.9(2)	H(42)	605 (5)	540 (3)	328 (2)	8(1)
N(3)	7481 (3)	2613 (3)	3420 (1) 4046 (1)	4.0(2) 5.4(3)	H(43)	710 (5)	515 (4)	328 (2)	5(1)
N(4)	6219 (4)	3655 (3)	4647(1)	6.3(3)	H(44)	631 (5)	526 (4)	293 (2)	16 (2)
C(1)	2011 (5)	2036 (4)	2731 (2)	6.0(4)	H(45)	559 (4)	206 (3)	335 (2)	(1)
C(2)	1332 (5)	1808 (4)	3099 (2)	6.8 (4)	n(40)	541 (4)	291 (3)	330(1)	7(1)
C(3)	3813 (5)	2451 (4)	2506 (2)	6.0 (4)					
C(4)	2735 (5)	3431 (3)	2898 (2)	6.5 (4)					
C(5)	1987 (5)	444 (4)	3311 (3)	8.2 (4)	refinemer	nt of the other	atoms. Fi	nal electroi	1 density
C(6)	1330 (5)	1386 (5)	3835 (2)	8.0 (4)	maps sho	owed no distin	guishing fe	atures. The	e final \tilde{R}
C(7)	7998 (5)	3142 (5)	4366 (2)	8.7 (4)	values w	ere 0.038 and	0.033 for	(I) and (II)) respec-
C(8)	/309(6)	3287(5)	4/45(2)	9.7(5)	tively * 9	Scattering fact	ors for n	utral nonl	vdrogen
C(10)	7614 (6)	1726 (4)	3034 (2)	8·5 (4) 8 O (4)	atoms we	are from Crom	or & Mon	(1069)	I the U
C(10)	6269 (7)	4562 (4)	4608 (2)	10.0(4)	atoms we		those of S	11 (1906) ai	
C(12)	5447 (6)	3440 (5)	4997 (2)	8.9(4)	scattering	(10(5)	those of S	iewart, Dav	hason &
C(13)	4676 (4)	1362 (3)	4285 (2)	4.9(3)	Simpson	(1965). An ai	nomalous-d	ispersion c	orrection
C(14)	4892 (6)	623 (4)	4569 (2)	9.7 (5)	was inclu	ided for Co a	and CI (Cr	omer & L	iberman,
C(15)	3179 (4)	3430 (3)	4063 (1)	4.4 (3)	1970). At	omic coordina	tes are give	n in Tables	1 and 2.
C(16)	2279 (5)	3891 (4)	4304 (2)	7.2(3)					
C(17)	5192 (4)	667 (3)	3125 (2)	4.7 (3)	Discussio	on. Interatomic	distances	and angles	are listed
C(18)	5339 (6)	-240(4)	2983 (3)	8.6 (4)	in Tables	3, 4 and 5. B	oth structu	res are forr	ned from
C(19)	6426 (5)	4264 (3)	3308 (2)	4.4 (3)	discrete	dimeric molec	ules, with	intermolec	ular dis-
H(1)	156 (3)	235(2)	250(2)	7(1)					ului ulb
H(2)	225 (5)	142(3)	258(2)	7(1)					
H(3)	68 (5)	155 (3)	303 (2)	10(1)	* Lists of	structure factors	and anisotro	pic thermal p	arameters
H(4)	103 (5)	234 (4)	327 (2)	7(1)	for (I) and	(II) have been	deposited wi	th the Britis	h Library
H(5)	407 (4)	176 (3)	249 (2)	6(1)	Lending Di	vision as Supplen	nentary Public	cation No. SI	JP 36607
H(6)	346 (4)	267 (3)	218 (2)	12(1)	(23 pp.). Co	pies may be obtai	ned through I	he Executive	Secretary,
H(/)	453 (4)	279(3)	258 (2)	8(1)	Chester CH	1 Union of C	rystanography	y, 5 Abbey	Square,
H(0)	241 (3)	339(3)	201(1) 314(2)	0(1)	Chester CII	1 2110, Lingiand.			
H(10)	346(4)	373 (3)	296(2)	10(1) 12(2)			C(9) C(7)	
H(11)	128 (5)	15 (4)	329(2)	$\frac{12}{3}(1)$			\sim	C(8)	
H(12)	238 (5)	39 (3)	305 (2)	12 (2)		_	N(3) DC(10		
H(13)	240 (5)	14 (4)	353 (2)	10(1)		C(20)	0(7)		
H(14)	125 (4)	202 (3)	388 (1)	10(1)		0(6)			
H(15)	57 (4)	112 (3)	385 (2)	8(1)		0(8)			
H(16)	183 (5)	117 (4)	401 (2)	9(1)		H(46)	Co(2)	$O_{c(1)}^{(2)}$	2)
H(1/)	883 (5)	301 (4)	454 (2)	14 (2)		C(18) C(17)	O(9) C(13)	OC(14)	
H(10)	8U1 (5) 774 (4)	377 (4)	420 (2)	8(1)				à	
H(20)	716 (5)	264 (3)	493 (2) 490 (2)	$\frac{11(1)}{7(1)}$	(··· /	
H(21)	795 (4)	342 (3)	357(1)	9(1)				5)	
H(22)	891 (4)	255 (3)	360 (2)	10(1)		NO			
H(23)	772 (6)	242 (4)	334 (2)	9(1)		C(4)			
H(24)	847 (4)	144 (3)	416 (2)	11(1)		CUP CUP		JC(16)	
H(25)	722 (4)	152 (3)	452 (2)	11(1)		Ŋ	$\bigcup_{C^{(6)}}$		
H(26)	726 (5)	132 (4)	394 (2)	4(1)	F	(12)	laaule		
H(2/)	o38 (4)	483 (3)	488 (2)	6(1)	Fig. 1.	A view of the mo.	ecular structu	re of compou	nd (1).

В (Å²)

Table 1	2. Atomie	c coordin	ates (×	10 ⁴ for	nonhydrogen
а	toms and	$\times 10^3$ for	• hydroge	en atoms	$f(\mathbf{II})$

For nonhydrogen atoms $B_{eq} = \frac{1}{3} (B_{11} + B_{22} + B_{33} + 2B_{13} \cos \beta)$.

				B_{eq}/B
	x	У	z	(A^2)
Co	6894 (1)	3156(1)	3309 (1)	5.4(1)
Cl(1)	3528 (1)	-259 (2)	1912 (1)	5.9 (2)
Cl(2)	8237 (2)	6584 (2)	5468 (1)	7.6(1)
O(1)	6512 (2)	1652 (3)	1487 (1)	3.9 (2)
O(2)	5842 (3)	1670 (3)	2507 (1)	4.1 (2)
O(3)	7912 (2)	4704 (3)	4127 (1)	3.6 (2)
O(4)	8835 (3)	6442 (3)	3539 (2)	5.0(2)
O(5)	7500	4582 (4)	2500	3.0(2)
N(1)	6239 (3)	1907 (4)	4176 (2)	3.7 (2)
N(2)	5099 (3)	4581 (4)	3200 (2)	3.7 (2)
C(1)	5802 (3)	1223 (4)	1872 (2)	2.9 (2)
C(2)	4820 (3)	-28 (4)	1501 (2)	3.6 (2)
C(3)	8545 (3)	5931 (4)	4091 (2)	3.3 (2)
C(4)	9028 (4)	6954 (5)	4781 (2)	4.3 (2)
C(5)	5215 (5)	2915 (8)	4304 (3)	7.6 (4)
C(6)	4400 (5)	3623 (8)	3622 (3)	7.0 (4)
C(7)	7234 (5)	1799 (6)	4887 (2)	5.6 (3)
C(8)	5820 (6)	271 (6)	3952 (3)	6.7 (3)
C(9)	5333 (5)	6244 (7)	3463 (3)	7.1 (4)
C(10)	4273 (5)	4674 (9)	2432 (3)	5.6 (3)
H(1)	447 (4)	29 (5)	99 (2)	5(1)
H(2)	520 (4)	-94 (6)	149 (3)	7(1)
H(3)	987 (4)	675 (5)	499 (2)	5(1)
H(4)	911 (5)	810(6)	464 (3)	7(1)
H(5)	469 (4)	224 (6)	455 (2)	6(1)
H(6)	533 (10)	439 (12)	436 (5)	10(3)
H(/)	373 (4)	425 (6)	309 (3)	0(1)
H(8)	396 (9)	227(11)	329 (3)	10(3)
H(9)	/52 (4)	271(0)	500 (2)	$\frac{0}{7}(1)$
H(10)	084 (3)	124(0)	327(3)	$\frac{7}{12}$
H(11)	556 (f)	$\frac{121(3)}{20(7)}$	430 (4)	12(2) 10(2)
H(12)	330 (0) 408 (6)	-39(7)	348(4)	10(2) 10(2)
H(13) H(14)	661 (6)	-22(7)	396 (3)	9(1)
H(15)	440 (6)	679 (7)	341(4)	10(2)
H(16)	588 (6)	626 (8)	401 (4)	10(1)
H(17)	571 (7)	692 (8)	317 (4)	12 (2)
H(18)	408 (6)	363 (8)	232 (3)	8 (2)
H(19)	349 (5)	547 (6)	241 (3)	8 (1)
H(20)	473 (6)	518 (7)	212 (4)	9 (1)
H(21)	805 (4)	518 (4)	276 (2)	5(1)

Co(1) - N(1)	2.219 (4)	N(3)–C(7)	1.449 (9)
$C_{0}(1) - N(2)$	2.221 (4)	N(3)–C(9)	1.448 (7)
$C_0(1) - O(1)$	2.062 (4)	N(3) - C(10)	1.471 (8)
Co(1) - O(3)	2.046 (3)	C(7)–C(8)	1.467 (10)
$C_{0}(1) - O(5)$	2.081(3)	N(4)C(8)	1.471 (9)
Co(1)O(9)	$2 \cdot 147(3)$	N(4)–C(11)	1.450 (8)
Co(2) - N(3)	2.302 (4)	N(4)–C(12)	1.478 (8)
Co(2) - N(4)	2.218(4)	C(13)-O(1)	1.233 (6)
Co(2) - O(2)	2.047 (4)	C(13)–O(2)	1.258 (6)
Co(2) - O(4)	2.070 (4)	C(13)-C(14)	1.498 (9)
Co(2) - O(7)	2.077 (3)	C(15)-O(3)	1.247 (6)
Co(2)O(9)	2.117 (3)	C(15)-O(4)	1.230 (6)
N(1) - C(1)	1.472 (7)	C(15)-C(16)	1.512 (8)
N(1) - C(3)	1.473 (7)	C(17)–O(5)	1.249 (6)
N(1) - C(4)	1.481 (7)	C(17)–O(6)	1.234 (6)
C(1) - C(2)	1.458 (8)	C(17)–C(18)	1.521 (8)
N(2) - C(2)	1.455 (7)	C(19)–O(7)	1.246 (6)
N(2) - C(5)	1.465 (7)	C(19)–O(8)	1.246 (6)
N(2) - C(6)	1.469 (7)	C(19)-C(20)	1.519 (7)
$Co(1) \cdots Co(2)$	3.597(1)		

Table 3. Interatomic distances (Å) in (I)

Table 4. Interatomic angles (°) in (I)

$O(1) - C_0(1) - O(3)$	92.8(1)	C(2) - N(2) - C(6)	110.5 (4)
O(1) - Co(1) - O(5)	87.8(1)	C(5) - N(2) - C(6)	107.2 (5)
O(1) - Co(1) - O(9)	89.3 (1)	N(2)-C(2)-C(1)	114.3 (4)
O(1) - Co(1) - N(2)	91.4(1)	C(7) - N(3) - C(9)	111.5 (5)
O(3) - Co(1) - O(9)	94.8(1)	C(7) - N(3) - C(10)	109.5 (5)
O(3) - Co(1) - N(1)	90·2 (1)	C(9) - N(3) - C(10)	106-3 (5)
O(3) - Co(1) - N(2)	88.1(1)	N(3)-C(7)-C(8)	114.0 (6)
O(5) - Co(1) - O(9)	87.8(1)	C(8) - N(4) - C(11)	112.2 (6)
O(5) - Co(1) - N(1)	89.0(1)	C(8)-N(4)-C(12)	108-4 (5)
O(5) - Co(1) - N(2)	89.3(1)	C(11)-N(4)-C(12)	108.7 (5)
O(9) - Co(1) - N(1)	97.1(1)	N(4) - C(8) - C(7)	113.6 (5)
N(1) - Co(1) - N(2)	82.0(1)	Co(1)-O(1)-C(13)	134.5 (3)
O(2) - Co(2) - O(4)	93.5(1)	Co(2) - O(2) - C(13)	135.0 (3)
O(2) - Co(2) - O(9)	89.8(1)	O(1)-C(13)-O(2)	127-8 (5)
O(2) - Co(2) - N(3)	87.8(2)	O(1)-C(13)-C(14)	117.5 (5)
O(2)-Co(2)-N(4)	89-8(1)	O(2)-C(13)-C(14)	114.6 (5)
O(4) - Co(2) - O(7)	90.9(1)	Co(1) - O(3) - C(15)	136-4 (3)
O(4)-Co(2)-O(9)	95.1(1)	Co(2) - O(4) - C(15)	134.4 (3)
O(4) - Co(2) - N(4)	87.1(2)	O(3)-C(15)-O(4)	127.0 (4)
O(7)–Co(2)–O(9)	88.9(1)	O(3)-C(15)-C(16)	116-3 (4)
O(7)–Co(2)–N(3)	88.1(1)	O(4) - C(15) - C(16)	116.7 (4)
O(7)–Co(2)–N(4)	91.4 (2)	Co(1) - O(5) - C(17)	126.7 (3)
O(9) - Co(2) - N(3)	96-9(1)	O(5) - C(17) - O(6)	125.7 (4)
N(3)–Co(2)–N(4)	81.0 (2)	O(5) - C(17) - C(18)	116.0 (4)
Co(1) - O(9) - Co(2)	115-1(1)	O(6) - C(17) - C(18)	118-3 (5)
C(1) - N(1) - C(3)	107.7 (4)	Co(2) = O(7) = C(19)	130.6 (3)
C(1)-N(1)-C(4)	111.6 (4)	O(7) - C(19) - O(8)	124.7 (4)
C(3) - N(1) - C(4)	106.9 (4)	O(7) - C(19) - C(20)	118-2 (4)
N(1)-C(1)-C(2)	112.3 (4)	O(8) - C(19) - C(20)	117.1(5)
C(2) - N(2) - C(5)	110.9 (5)		

Fig. 2. A stereoview of the unit-cell packing of compound (II).

tances between all nonhydrogen atoms greater than 3.29 Å. The molecular symmetry of (I) is pseudo C_2 as in the analogous Ni¹¹ complexes (Ahlgrén, Turpeinen & Hämäläinen, 1978); compound (II) possesses C_2 symmetry (Figs. 1–3).

The complexes are octahedral, with a dimeric structure in which bridging occurs via the water O atom and the two carboxylate groups. The rest of the coordination sphere of each Co atom is completed by the N atoms of the diamine ligand and the O atom of the monodentate carboxylate group. The interatomic angles and the Co-Co, Co-O and Co-N distances are essentially similar in both compounds. Only the Co(2)-N(3) distance of $2 \cdot 302$ (4) Å is exceptional, being much longer than the distances for the other amino groups, which range from $2 \cdot 205$ (3) to $2 \cdot 239$ (3) Å.

Table 5. Interatomic distances (Å) and angles (°) in(II)

Symmetry code: (i) $-x + \frac{3}{2}, y, -z + \frac{1}{2}$.

CoO(2)	2.039 (2)	N(2) - C(6)	1.472 (7)
Co-O(3)	2.074(2)	N(2) - C(9)	1.468 (6)
Co-O(5)	2.165 (2)	N(2) - C(10)	1.475 (5)
Co-N(1)	2.205 (3)	C(1) - O(1)	1.244 (5)
Co-N(2)	2.239 (3)	C(1) - O(2)	1.235 (4)
Co-O(1 ⁱ)	2.083 (3)	C(1) - C(2)	1.515 (5)
N(1) - C(5)	1.462 (7)	C(2) - Cl(1)	1.782 (4)
N(1)–C(7)	1.469 (5)	C(3)–O(3)	1.242 (4)
N(1)–C(8)	1.461 (6)	C(3)–O(4)	1.238 (5)
C(5)–C(6)	1.464 (8)	C(3)C(4)	1.517 (5)
Co···Co ⁽ⁱ⁾	3.621 (1)	C(4) - Cl(2)	1.759 (5)
O(2) - Co - O(5)	91.8(1)	O(2) - C(1) - C(2)) 119.0 (3)
O(2) - Co - N(1)	91.7(1)	C(1)-C(2)-C(1)	114.3(3)
O(2) - Co - N(2)	87.6(1)	Co-O(3)-C(3)	131.4 (2)
$O(2)-Co-O(1^{i})$	92.2(1)	O(3) - C(3) - O(4)	126.7(3)
O(3)-Co-O(5)	88.6(1)	O(3) - C(3) - C(4)	118.9(3)
O(3)-Co-N(1)	87.8(1)	O(4) - C(3) - C(4)	114.4(3)
O(3)-Co-N(2)	90.6 (1)	C(3) C(4) Cl(2	() 113·7 (3)
$O(3)-Co-O(1^{i})$	89.5 (1)	C(5)-N(1)-C(7)) 106.7 (4)
O(5)-Co-N(2)	93.9 (1)	C(5)-N(1)-C(8)) 113.1 (4)
$O(5)-Co-O(1^{i})$	93.6(1)	C(7)-N(1)-C(8)) 107.3 (3)
N(1)-Co-N(2)	82.5 (1)	N(1)-C(5)-C(6)) 113-1 (5)
$N(1)-Co-O(1^{i})$	89.9(1)	C(5)-C(6)-N(2)) 114.3 (5)
$Co-O(5)-Co^{(i)}$	113.5 (2)	C(6)-N(2)-C(9)) 113-5 (4)
Co-O(2)-C(1)	139.3 (2)	C(6)-N(2)-C(1)	0) 106-8 (3)
O(1)-C(1)-O(2) 127.5 (3)	C(9)-N(2)-C(1)	0) 106-3 (4)
O(1)-C(1)-C(2)) 113.5 (3)		

Fig. 3. A view of the molecular structure of compound (11).

The dimeric structure is additionally stabilized by the strong intramolecular hydrogen bonds formed between the noncoordinated O atoms of the monodentate carboxylate groups and the bridging H₂O molecule: $O(6)\cdots O(9) = 2.565$ (4), $O(8)\cdots O(9) = 2.548$ (4) and $O(4)\cdots O(5) = 2.597$ (3) Å.

The bond lengths and angles associated with the diamine molecules are normal. The C–O bond lengths in bridging and nonbridging carboxylates are practically the same, while the O–C–O angles are slightly larger in bridging carboxylates. The O–C–C angles are not equivalent in chloroacetates because of electrostatic repulsion between the Cl and O atoms. Each O–C–C angle involving the atom nearer the Cl atom is greater than the other O–C–C angle in the same chloroacetate. Further, in the monodentate chloroacetate the Cl atom is located closer to the O atom that is bonded to the Co atom. This is also a common feature in dimeric Ni¹¹ carboxylates (Ahlgrén, Turpeinen & Hämäläinen, 1978; Turpeinen, 1976, 1977).

References

- AHLGRÉN, M., HÄMÄLÄINEN, R. & TURPEINEN, U. (1978). Acta Chem. Scand. Ser. A, **32**, 57–60.
- AHLGRÉN, M., TURPEINEN, U. & HÄMÄLÄINEN, R. (1978). Acta Chem. Scand. Ser. A, 32, 189–194.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891–1898.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321–324.
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J. P. & WOOLFSON, M. M. (1978). MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- STEWART, J. M., MACHIN, P. A., DICKINSON, C., AMMON, H. L., HECK, H. & FLACK, H. (1976). The XRAY 76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- TURPEINEN, U. (1976). Finn. Chem. Lett. pp. 6–11.
- TURPEINEN, U. (1977). Finn. Chem. Lett. pp. 36-41.
- TURPEINEN, U., AHLGRÉN, M. & HÄMÄLÄINEN, R. (1978). Cryst. Struct. Commun. 7, 617–620.